Lifeng Liu,* Wei Li, Dehua Xiong, Junyuan Xu

International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, Braga 4715-330, Portugal

lifeng.liu@inl.int

Abstract

Cobalt selenide has been proposed to be an effective low-cost electrocatalyst towards the oxygen evolution reaction (OER) due to its wellsuited electronic configuration [1]. However, pure cobalt selenide has by far still exhibited catalytic activity far below what is expected. In this presentation, we for the first time report the synthesis of a new phase of monoclinic Co₃Se₄ thin nanowires on cobalt foam (CF) via a facile one-pot hydrothermal process using selenourea [2]. When used to catalyze OER in basic solution, the monolithic self-supported Co₃Se₄/CF electrode without any additional modification shows an exceptionally high catalytic current of 397 mA cm⁻² at a low overpotential (n) of 320 mV, a small Tafel slope of 44 mV decade⁻¹, a turnover frequency of 6.5×10^{-2} s⁻¹ at η = 320 mV, and excellent stability at various current densities. Furthermore, an electrolyzer is assembled using two symmetrical Co₃Se₄/CF electrodes as anode and cathode, respectively, which can deliver 10 and 20 mA cm⁻² at low cell voltages of 1.59 and 1.63 V. More significantly, the electrolyzer can operate at 10 mA cm^{-2} for >3500 hours and 100 mA cm^{-2} for ca. 2000 hours without noticeable degradation, showing extraordinary operational stability.

References

- Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye, Y. Xie, J. Am. Chem. Soc. 136 (2014) 15670
- [2] W. Li, X.F. Gao, D. H. Xiong, F. Wei, W. G. Song, J. Y. Xu, L. D. Liu, submitted

Figure 1: (a,b) SEM images of Co₃Se₄ nanowire arrays grown on Co foam. (c-d) HAADF-STEM image and elemental maps of Co and Se taken from a single nanowire. (f) XPS spectrum of Co 2p core level.

Figure 2: Overall water splitting performance of the two-electrode electrolyzers. (a) Polarization curves of Co₃Se₄/CF, CF and RuO₂(+) Pt-C(-) supported on CF. (b) Multi-step chronopotentiometric (CP) curve of the Co₃Se₄/CF electrolyzer at varying current densities. (c) Gas yield of H₂ and O₂ evolved over the Co₃Se₄/CF electrodes as a function of time at 50 mA cm⁻². (d) Long-term stability CP test of the Co₃Se₄/CF electrolyzer at 10 and 100 mA cm⁻². Inset is a photograph showing the gas bubbling of H₂ from cathode and O₂ from anode at 100 mA cm⁻². All experiments were conducted in 1.0 M KOH at room temperature. The polarization and CP curves were shown without iR correction (i.e., including real resistive loss).