Christian Joachim^{1,2}

 ¹GNS-CEMES-CNRS, 29 rue J. Marvig, 31055 Toulouse Cedex, France
²WPI-MANA, National Institute for Material Sciences, 1-1 Namiki, Tsukuba, Ibaraki, Japan .

At low bias voltage and its HOMO-LUMO energy gap interval, the conductance of a molecular wire decays exponentially while increasing its length [1,2]. The same phenomenon occurs with a surface dangling bond atomic wire. The corresponding inverse decay length β of this through bond tunneling phenomenon ranges for example from β = 1.2 A⁻¹ for an alkane molecular wire to about β = 0.3 A^{-1} for a medium large HOMO-LUMO gap χ conjugated molecular wire [3,4]. As a function of χ and of the effective mass m* of the tunneling electrons, β varies following an universal monotonic decay law as presented in Fig. 1 [3,4]. For a given χ , we will discuss (1) what prevents β to be exactly zero that is reaching a super tunneling transport regime [5], (2) how to approach a minimum β value by a good choice of the chemical composition of the molecular wire [6].

References

[1] M. Magoga and C. Joachim, Phys. Rev. B, 57, 1820 (1998).

[2] L. Lafferentz, F. Ample, H. Yu, S. Hercht, C. Joachim and L. Grill, Science, 323, 1193 (2009).

[3] C. Joachim and M. Magoga, Chem. Phys., 281, 347 (2002)

[4] M. Koch, F. Ample, C. Joachim, L. Grill, Nature Nano, 7, 713 (2012).

[5] C. Joachim and M. Ratner, PNAS, 102, 8801 (2005).

[6] C.Nacci, F. Ample, D. Bleger, S. Hecht, C. Joachim and L. Grill, Nature Comm., 6, 7397 (2015).

Super tunneling and molecular wires

Figures

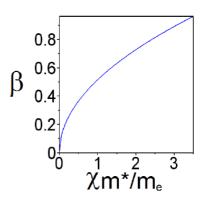


Figure 1: The universal β decay law in A⁻¹of the tunneling transport regime through an atomic scale wire as a function of its HOMO-LUMO gap χ in eV and of the effective mass m^{*} of the corresponding tunneling electrons.