Low cost paper-based materials functionalized with nanoparticles for antibacterial applications

Rita Branquinho¹, Salomé Moço¹, Sofia Santos Costa^{2,3}, Isabel Couto^{2,3}, Miguel Viveiros^{2,4}, Rodrigo Martins¹, Elvira Fortunato¹

¹CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa (UNL), and CEMOP/UNINOVA, Caparica, Portugal

² Unidade Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal

³ Centro de Recursos Microbiológicos (CREM), Universidade Nova de Lisboa, Lisboa, Portugal

⁴ Centro de Malária e Outras Doenças Tropicais (CMDT), IHMT/UNL, Lisboa, Portugal

ritasba@campus.fct.unl.pt; elvira.fortunato@fct.unl.pt

The increase of infectious diseases caused by pathogenic microorganisms and the development of new strains of antibiotic-resistant bacteria, represent a serious threat to public health. The search for new antibacterial agents with low toxicity and ability to inhibit the microbial contamination is a key issue in the development of new materials for healthcare, packaging and other applications. [1, 2]

Nanomaterials such as nanoparticles are being increasingly used for antimicrobial applications. Nanoparticles of different materials (Au; Ag; Cu; ZnO; CuO; TiO₂; MgO) have demonstrated antibacterial activity. [1-3] The main advantages of using inorganic nanomaterials when compared with organic antimicrobial agents are their stability, robustness, and long shelf life.[1]

Cellulose paper is a biodegradable, versatile and low-cost material with excellent functionalization possibilities for various research fields. The combination of paper materials with antibacterial nanoparticles yields new functional low-cost materials for diverse applications: wallpaper for hospitals; paper wipes; impregnated textiles; water filters and food packaging materials.[4]

In this work a study on the antibacterial properties of paper-based materials (coffee filter paper and Whatman paper) impregnated with silver nanoparticles (AgNPs); zinc oxide nanoparticles (ZnONPs) and copper oxide nanoparticles (CuONPs), is presented. The antibacterial properties of NPs impregnated papers were tested against Gram-negative and Gram-positive bacteria, namely *Escherichia coli* and both methicillin-susceptible and resistant *Staphylococcus aureus* (MSSA and MRSA) strains.

The best results were obtained for AgNPs impregnated low-cost coffee filter paper (Figure 1) which demonstrated antibacterial activity against all tested bacteria; *E. coli, MSSA and MRSA, with* a minimum AgNPs suspension concentration of 0.5 mM.

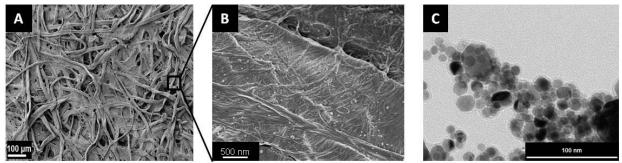


Figure 1. SEM micrographs of coffee filter paper (A) impregnated with silver nanoparticles (B) and TEM image of synthesized silver nanoparticles (C).

References

P. Patra, S. Mitra, N. Debnath, and A. Goswami, Langmuir, **28** (2012) 16966
M. Hajipour, K. M. Fromm, A. A. Ashkarran, et al., Trends in Biotechnology, **30** (2012) 499
K. R. Raghupathi, R. T. Koodali, and A. C. Manna, Langmuir, **27** (2011) 4020
M.R. de Moura, L. Mattoso, V. Zucolotto, Journal of Food Engineering **109** (2012) 520